3.5.13 \(\int \frac {\cot ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx\) [413]

3.5.13.1 Optimal result
3.5.13.2 Mathematica [A] (verified)
3.5.13.3 Rubi [A] (verified)
3.5.13.4 Maple [B] (verified)
3.5.13.5 Fricas [B] (verification not implemented)
3.5.13.6 Sympy [F]
3.5.13.7 Maxima [F]
3.5.13.8 Giac [F]
3.5.13.9 Mupad [F(-1)]

3.5.13.1 Optimal result

Integrand size = 25, antiderivative size = 119 \[ \int \frac {\cot ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\frac {\arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{\sqrt {a} f}+\frac {(3 a+5 b) \cot (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{3 (a+b)^2 f}-\frac {\cot ^3(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{3 (a+b) f} \]

output
arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/f/a^(1/2)+1/3*(3*a+5 
*b)*cot(f*x+e)*(a+b+b*tan(f*x+e)^2)^(1/2)/(a+b)^2/f-1/3*cot(f*x+e)^3*(a+b+ 
b*tan(f*x+e)^2)^(1/2)/(a+b)/f
 
3.5.13.2 Mathematica [A] (verified)

Time = 1.49 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.41 \[ \int \frac {\cot ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\frac {\arctan \left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {a+b-a \sin ^2(e+f x)}}\right ) \sqrt {a+2 b+a \cos (2 e+2 f x)} \sec (e+f x)}{\sqrt {2} \sqrt {a} f \sqrt {a+b \sec ^2(e+f x)}}-\frac {(a+2 b+a \cos (2 (e+f x))) (-a-2 b+(2 a+3 b) \cos (2 (e+f x))) \csc ^3(e+f x) \sec (e+f x)}{6 (a+b)^2 f \sqrt {a+b \sec ^2(e+f x)}} \]

input
Integrate[Cot[e + f*x]^4/Sqrt[a + b*Sec[e + f*x]^2],x]
 
output
(ArcTan[(Sqrt[a]*Sin[e + f*x])/Sqrt[a + b - a*Sin[e + f*x]^2]]*Sqrt[a + 2* 
b + a*Cos[2*e + 2*f*x]]*Sec[e + f*x])/(Sqrt[2]*Sqrt[a]*f*Sqrt[a + b*Sec[e 
+ f*x]^2]) - ((a + 2*b + a*Cos[2*(e + f*x)])*(-a - 2*b + (2*a + 3*b)*Cos[2 
*(e + f*x)])*Csc[e + f*x]^3*Sec[e + f*x])/(6*(a + b)^2*f*Sqrt[a + b*Sec[e 
+ f*x]^2])
 
3.5.13.3 Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.06, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 4629, 2075, 382, 25, 445, 27, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\tan (e+f x)^4 \sqrt {a+b \sec (e+f x)^2}}dx\)

\(\Big \downarrow \) 4629

\(\displaystyle \frac {\int \frac {\cot ^4(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \sqrt {a+b \left (\tan ^2(e+f x)+1\right )}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 2075

\(\displaystyle \frac {\int \frac {\cot ^4(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 382

\(\displaystyle \frac {\frac {\int -\frac {\cot ^2(e+f x) \left (2 b \tan ^2(e+f x)+3 a+5 b\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{3 (a+b)}-\frac {\cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{3 (a+b)}}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {-\frac {\int \frac {\cot ^2(e+f x) \left (2 b \tan ^2(e+f x)+3 a+5 b\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{3 (a+b)}-\frac {\cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{3 (a+b)}}{f}\)

\(\Big \downarrow \) 445

\(\displaystyle \frac {-\frac {-\frac {\int \frac {3 (a+b)^2}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a+b}-\frac {(3 a+5 b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{a+b}}{3 (a+b)}-\frac {\cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{3 (a+b)}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {-3 (a+b) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)-\frac {(3 a+5 b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{a+b}}{3 (a+b)}-\frac {\cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{3 (a+b)}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {-\frac {-3 (a+b) \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}-\frac {(3 a+5 b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{a+b}}{3 (a+b)}-\frac {\cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{3 (a+b)}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {-\frac {-\frac {3 (a+b) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {a}}-\frac {(3 a+5 b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{a+b}}{3 (a+b)}-\frac {\cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{3 (a+b)}}{f}\)

input
Int[Cot[e + f*x]^4/Sqrt[a + b*Sec[e + f*x]^2],x]
 
output
(-1/3*(Cot[e + f*x]^3*Sqrt[a + b + b*Tan[e + f*x]^2])/(a + b) - ((-3*(a + 
b)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/Sqrt[a] 
- ((3*a + 5*b)*Cot[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(a + b))/(3*(a 
 + b)))/f
 

3.5.13.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 382
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> Simp[(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/ 
(a*c*e*(m + 1))), x] - Simp[1/(a*c*e^2*(m + 1))   Int[(e*x)^(m + 2)*(a + b* 
x^2)^p*(c + d*x^2)^q*Simp[(b*c + a*d)*(m + 3) + 2*(b*c*p + a*d*q) + b*d*(m 
+ 2*p + 2*q + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[ 
b*c - a*d, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 445
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_ 
.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^2)^(p 
+ 1)*((c + d*x^2)^(q + 1)/(a*c*g*(m + 1))), x] + Simp[1/(a*c*g^2*(m + 1)) 
 Int[(g*x)^(m + 2)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*f*c*(m + 1) - e*(b*c 
+ a*d)*(m + 2 + 1) - e*2*(b*c*p + a*d*q) - b*e*d*(m + 2*(p + q + 2) + 1)*x^ 
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && LtQ[m, -1]
 

rule 2075
Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*Expa 
ndToSum[u, x]^p*ExpandToSum[v, x]^q, x] /; FreeQ[{e, m, p, q}, x] && Binomi 
alQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0] &&  ! 
BinomialMatchQ[{u, v}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4629
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f 
_.)*(x_)])^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[ff/f   Subst[Int[(d*ff*x)^m*((a + b*(1 + ff^2*x^2)^(n/2))^p/(1 + ff^2*x^2 
)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && Inte 
gerQ[n/2] && (IntegerQ[m/2] || EqQ[n, 2])
 
3.5.13.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(890\) vs. \(2(105)=210\).

Time = 5.28 (sec) , antiderivative size = 891, normalized size of antiderivative = 7.49

method result size
default \(\text {Expression too large to display}\) \(891\)

input
int(cot(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/3/f/(a+b)^2/(-a)^(1/2)*(3*sin(f*x+e)^3*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e) 
^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1 
+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2 
)^(1/2)*a^2*cos(f*x+e)+6*sin(f*x+e)^3*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/ 
(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos 
(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1 
/2)*a*b*cos(f*x+e)+3*sin(f*x+e)^3*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+c 
os(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x 
+e))^2)^(1/2)-4*sin(f*x+e)*a)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)* 
b^2*cos(f*x+e)+3*sin(f*x+e)^3*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f 
*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e)) 
^2)^(1/2)-4*sin(f*x+e)*a)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^2+ 
6*sin(f*x+e)^3*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2) 
*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin 
(f*x+e)*a)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a*b+3*sin(f*x+e)^3* 
ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*( 
-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*((b+ 
a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*b^2-4*cos(f*x+e)^4*(-a)^(1/2)*a^2- 
6*cos(f*x+e)^4*(-a)^(1/2)*a*b+3*cos(f*x+e)^2*(-a)^(1/2)*a^2+cos(f*x+e)^2*( 
-a)^(1/2)*a*b-6*cos(f*x+e)^2*(-a)^(1/2)*b^2+3*(-a)^(1/2)*a*b+5*(-a)^(1/...
 
3.5.13.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 301 vs. \(2 (105) = 210\).

Time = 0.68 (sec) , antiderivative size = 723, normalized size of antiderivative = 6.08 \[ \int \frac {\cot ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\left [-\frac {3 \, {\left ({\left (a^{2} + 2 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{2} - a^{2} - 2 \, a b - b^{2}\right )} \sqrt {-a} \log \left (128 \, a^{4} \cos \left (f x + e\right )^{8} - 256 \, {\left (a^{4} - a^{3} b\right )} \cos \left (f x + e\right )^{6} + 32 \, {\left (5 \, a^{4} - 14 \, a^{3} b + 5 \, a^{2} b^{2}\right )} \cos \left (f x + e\right )^{4} + a^{4} - 28 \, a^{3} b + 70 \, a^{2} b^{2} - 28 \, a b^{3} + b^{4} - 32 \, {\left (a^{4} - 7 \, a^{3} b + 7 \, a^{2} b^{2} - a b^{3}\right )} \cos \left (f x + e\right )^{2} + 8 \, {\left (16 \, a^{3} \cos \left (f x + e\right )^{7} - 24 \, {\left (a^{3} - a^{2} b\right )} \cos \left (f x + e\right )^{5} + 2 \, {\left (5 \, a^{3} - 14 \, a^{2} b + 5 \, a b^{2}\right )} \cos \left (f x + e\right )^{3} - {\left (a^{3} - 7 \, a^{2} b + 7 \, a b^{2} - b^{3}\right )} \cos \left (f x + e\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )\right ) \sin \left (f x + e\right ) - 8 \, {\left (2 \, {\left (2 \, a^{2} + 3 \, a b\right )} \cos \left (f x + e\right )^{3} - {\left (3 \, a^{2} + 5 \, a b\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{24 \, {\left ({\left (a^{3} + 2 \, a^{2} b + a b^{2}\right )} f \cos \left (f x + e\right )^{2} - {\left (a^{3} + 2 \, a^{2} b + a b^{2}\right )} f\right )} \sin \left (f x + e\right )}, -\frac {3 \, {\left ({\left (a^{2} + 2 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{2} - a^{2} - 2 \, a b - b^{2}\right )} \sqrt {a} \arctan \left (\frac {{\left (8 \, a^{2} \cos \left (f x + e\right )^{5} - 8 \, {\left (a^{2} - a b\right )} \cos \left (f x + e\right )^{3} + {\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{4 \, {\left (2 \, a^{3} \cos \left (f x + e\right )^{4} - a^{2} b + a b^{2} - {\left (a^{3} - 3 \, a^{2} b\right )} \cos \left (f x + e\right )^{2}\right )} \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) - 4 \, {\left (2 \, {\left (2 \, a^{2} + 3 \, a b\right )} \cos \left (f x + e\right )^{3} - {\left (3 \, a^{2} + 5 \, a b\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{12 \, {\left ({\left (a^{3} + 2 \, a^{2} b + a b^{2}\right )} f \cos \left (f x + e\right )^{2} - {\left (a^{3} + 2 \, a^{2} b + a b^{2}\right )} f\right )} \sin \left (f x + e\right )}\right ] \]

input
integrate(cot(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")
 
output
[-1/24*(3*((a^2 + 2*a*b + b^2)*cos(f*x + e)^2 - a^2 - 2*a*b - b^2)*sqrt(-a 
)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^ 
4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 2 
8*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 + 8* 
(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a 
^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + 
 e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))*si 
n(f*x + e) - 8*(2*(2*a^2 + 3*a*b)*cos(f*x + e)^3 - (3*a^2 + 5*a*b)*cos(f*x 
 + e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(((a^3 + 2*a^2*b + a*b 
^2)*f*cos(f*x + e)^2 - (a^3 + 2*a^2*b + a*b^2)*f)*sin(f*x + e)), -1/12*(3* 
((a^2 + 2*a*b + b^2)*cos(f*x + e)^2 - a^2 - 2*a*b - b^2)*sqrt(a)*arctan(1/ 
4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^ 
2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a 
^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f* 
x + e)))*sin(f*x + e) - 4*(2*(2*a^2 + 3*a*b)*cos(f*x + e)^3 - (3*a^2 + 5*a 
*b)*cos(f*x + e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(((a^3 + 2* 
a^2*b + a*b^2)*f*cos(f*x + e)^2 - (a^3 + 2*a^2*b + a*b^2)*f)*sin(f*x + e)) 
]
 
3.5.13.6 Sympy [F]

\[ \int \frac {\cot ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {\cot ^{4}{\left (e + f x \right )}}{\sqrt {a + b \sec ^{2}{\left (e + f x \right )}}}\, dx \]

input
integrate(cot(f*x+e)**4/(a+b*sec(f*x+e)**2)**(1/2),x)
 
output
Integral(cot(e + f*x)**4/sqrt(a + b*sec(e + f*x)**2), x)
 
3.5.13.7 Maxima [F]

\[ \int \frac {\cot ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int { \frac {\cot \left (f x + e\right )^{4}}{\sqrt {b \sec \left (f x + e\right )^{2} + a}} \,d x } \]

input
integrate(cot(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")
 
output
integrate(cot(f*x + e)^4/sqrt(b*sec(f*x + e)^2 + a), x)
 
3.5.13.8 Giac [F]

\[ \int \frac {\cot ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int { \frac {\cot \left (f x + e\right )^{4}}{\sqrt {b \sec \left (f x + e\right )^{2} + a}} \,d x } \]

input
integrate(cot(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")
 
output
sage0*x
 
3.5.13.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {{\mathrm {cot}\left (e+f\,x\right )}^4}{\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}}} \,d x \]

input
int(cot(e + f*x)^4/(a + b/cos(e + f*x)^2)^(1/2),x)
 
output
int(cot(e + f*x)^4/(a + b/cos(e + f*x)^2)^(1/2), x)